AIAA 2002-1235

Particle Swarm Optimization

Gerhard Venter (gventer@vrand.com)
Vanderplaats Research and Development, Inc.
1767 S 8th Street, Suite 100, Colorado Springs, CO 80906

Jaroslaw Sobieszczanski-Sobieski (j.sobieski«larc.nasa.gov)
NASA Langley Research Center
MS 240, Hampton, VA 23681-2199

43rd AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and
Materials Conference
April 22-25, 2002
Denver, Colorado

For permission to copy or to republish, contact the copyright owner named on the first page.
For AIAA-held copyright, write to AIAA Permissions Department,
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191-4344.

AIAA 2002-1235

Particle Swarm Optimization

Gerhard Venter {(gventer@vrand.com) *
Vanderplaats Rescarch and Development, Inc.
1767 § 8th Strect, Suite 100, Colorado Springs, CO 80906

Jaroslaw Sobieszczanski-Sobieski (j.sobieski@larc.nasa.gov) i
NASA Langley Research Center
MS 240, Hampton, VA 236581-2199

The purpose of this paper is to show how the search algorithm known as par-
ticle swarm optimization performs. Here, particle swarm optimization is applied
to structural design problems, but the method.has a much wider range of possi-
ble applications. The paper’s new contributions are improvements to the particle
swarm optimization algorithm and conclustons and recommendations as to the
utility of the algorithm. Results of numerical experiments for both continuous
and discrete applications are presented in the paper. The results indicate that the
particle swarm optimization algorithm does locate the constrained minimum de-
sign in continuous applications with very good precision, albeit at a much higher
computational cost than that of a typical gradient based optimizer. However, the
true potential of particle swarm optimization is primarily in applications with
discrete and/or discontinuous functions and variables. Additionally, particle
swarm optimization has the potential of efficient computation with very large

numbers of concurrently operating processors.

Introduction

OST general-purpose optimization software

used in industrial applications makes use of
gradient-based algorithms, mainly due to their com-
putational efficiency. However, in recent years non-
gradient based. probabilistic search algorithms have
attracted much attention from the research commu-
nity. These algorithms generally mimic some natu-
ral phenomena, for example genetic algorithms and
simulated annecaling. Genetic algorithims model the
evolution of a species, based on Darwin’s principle
of survival of the fittest,! while simulated anneal-
ing is based on statistical mechanics and models the
equilibrium of large numbers of atoms during an an-
nealing process.?

Although these probabilistic search algorithms
generally require many more function evaluations to
find an optimum solution, as compared to gradient-
based algorithms, they do provide several advan-

*Senior R&D Engineer, ATAA Member

tSenior Research Scientist, Analytical and Computational
Methods Branch, Structures and Materials Competency,
ATAA Fellow

Copyright © 2002 by Gerhard Venter, Published by the
American Institute of Aeronautics and Astronautics, Inc. with
permission.

1

tages. These algorithms are generally easy to pro-
gram, can cfficiently make use of large numbers of
processors, do not require continuity in the problem
definition, and generally are better suited for find-
ing a global, or near global, solution. In particular
these algorithms are ideally suited for solving dis-
crete and/or combinatorial type optimization prob-
lems.

In this paper, a fairly recent type of probabilistic
search algorithm, called Particle Swarm Optimiza-
tion (PSO), is investigated. The PSO algorithm is
based on a simplified social model that is closely
tied to swarming theory. The algorithm was first in-
troduced by Kennedy and Eberhart.>! A physical
analogy might be a swarm of bees searching for a
food source. In this analogy, each bee (referred to
as a particle here) makes use of its own memory as
well as kuowledge gained by the swarm as a whole
to find the best available food source.

Since it was originally iutroduced, the PS5O al-
gorithm has been studied by a number of different
authors.®® Thesc authors concentrated mostly on
multi-modal mathematical problems that are impor-
tant in the initial research of any optimization algo-
rithin, but are of little practical interest. Few ap-

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

plications of the algorithin to structural and multi-
disciplinary optimization are known. Two examples
are by Fourie and Groenwold who considered an ap-
plication to shape and size optimization® and an
application to topology optimization.'?

The present paper focuses on enhancements to
the basic PSO algorithimi. These include the intro-
dnction of a convergence criterion and dealing with
constrained and discrete problems. The enhanced
version of the algorithm is applied to the design of
a ten design variable cantilevered beam. Both con-
tinuous and integer/discrete versions of the problem
are studied.

Basic Particle Swarm Optimization
Algorithm
Particle swarm optimization makes use of a ve-
locity vector to update the current position of each
particle in the swarm. The position of each particle
is updated based on the social behavior that a popu-
Iation of individuals, the swarm in the case of PSQ,
adapts to its environment by returning to promis-
ing regions that were previously discovered.® The
process is stochastic in nature and makes use of the
memory of cach particle as well as the knowledge
gained by the swarm as a whole. The outline of a
basic PSO algorithm is as follows:

1. Start with an initial set of particles, typically
randomly distributed throughout the design
space

2. Calculate a velocity vector for each particle in
the swarm

3. Update the position of each particle, using its
previous position and the updated velocity vec-
tor

4. Go to Step 2 and repeat until convergence

The scheme for updating the position of each par-
ticle is shown in (1)

Tp =T + UL At (1)

where @}, 41 Trepresents the position of particle i at
iteration k& + 1 and v, | represents the correspond-
ing velocity vector. A unit time step (Atf) is used
throughout the present work.

The scheme for updating the velocity vector of
each particle depends on the particular PSO al-
gorithin under consideration. A commonly used
scheme was introduced by Shi and Eberhart,’ as
shown in (2)

-z, ., o)

A A ¥

i
Vpy) = WO, + 011

2

where r; aud re are random numbers between 0
and 1. p' is the best position found by particle i so
far and p{ is the best position in the swarm at time
k. Again, a unit time step (At) is used throughout
the present work. There are three problem depen-
dent parameters, the inertia of the particle (w), and
two “trust” parameters ¢; and cp. The inertia con-
trols the exploration properties of the algorithm,
with larger values facilitating a more global behavior
and smaller values facilitating a more local behavior.
The trust parameters indicate how much confidence
the current particle has in itself (¢;) and how much
confidence it has in the swarm (c;).

Fourie and Groenwold? proposed a slight modifi-
cation to (2) for their structural design applications.
They proposed using the best position in the swarm
to date pY. instead of the best position in the swarm
at iteration &, p]. Both approaches were investi-
gated and it was found that (2) works slightly better
for our applications. As a result (2) is used through-
out the present work.

Initial Swarm

The initial swarm is gencrally created such that
the particles are randomly distributed throughout
the design space, each with a random initial velocity
vector. In the present work, (3} and (4) are made use
of to obtain the random initial position and velocity
vectors.

mé = Twin + 71 (13mar - :L'rnin) (3)

Tinin + T2 (Tmar — Tmin)

At (4)
In (3) and (4). r; and r; are random numbers be-
tween 0 and 1, @, is the vector of lower bounds
and &,z is the vector of upper bounds for the de-
sign variables.

The influence of the initial swarm distribution on
the effectiveness of the PSO algorithm is studied by
considering the initial particle distribution. Instead
of using a random distribution, a space filling design
of experiments (DOE) was used to distribute the
initial swarm in the design space. However, these
numerical experiments indicate that the initial dis-
tribution of the particles {random as compared to
using the space filling DOE) is uot important to
the overall performance of the PSO algorithm. The
rcason being that the swarm changes dynamically
throughout the optimization process until an opti-
mum solution is reached. As a result, the precise
distribution of the initial swarm is not important,
as long as it is fairly well distributed throughout the
design space. In the present work, all initial swarms
are randonly distributed.

vy =

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

o

Problem Parameters

The basic PSO algorithm has three problem de-
pendent parameters, w, ¢ and cz. The literature®
proposes using ¢ = ¢z = 2, so that the mean of the
stochastic multipliers of (2) is equal to 1. Addition-
ally, Shi and Eberhart” suggest using 0.8 < w < 1.4,
starting with larger w values (a more global search
behavior) that is dynamically reduced (a more local
search behavior) during the optimization.

The present work showed that having each par-
ticle put slightly more trust in the swarm (larger
¢y value) and slightly less trust in itself (smaller oy
value) seems to work better for the structural de-
sign problems considered here. Using ¢ = 1.5 and
¢z = 2.5 works well in all example problems con-
sidered. Additionally, dynamically adjusting the w
value has several advantages. First, it results in
faster convergence to the optimum solution and sec-
ond, it makes the v parameter problem independent.
The scheme that dynamically adjusts the w value is
discussed in more detail in the next section.

Enhancements to the Basic Algorithm

The basic PSO algorithm summarized in (1) and
(2) has been used in the literature to demonstrate
the PSO algorithin on a number of test problems.
However, the goal here is to develop an implemen-
tation of the basic algorithi that would be more
general in nature, applicable to a wide range of de-
sign problems. To achieve this goal, a number of
enhancements to the basic algorithm were investi-
gated. These enhancements are discussed in more
detail in this section.

Convergence Criterion

A robust convergence criterion is important for
any general-purpose optimizer. Most implementa-
tions of the PSO algorithm also implement some
convergence criterion. A convergence criterion is
necessary to avoid any additional function evalua-
tions after an optimum solution is found. Ideally,
the convergence criterion should not have any prob-
lem specific parameters. The convergence criterion
used here is very basic. The maximum chaunge in the
objective function is monitored for a specified num-
ber of consecutive design iterations. If the maximum
change in the objective function is less than a pre-
defined allowable change, convergence is assumed.

Problem Parameters

The ¢y = 1.5 and ¢ = 2.5 trust parameter val-
ues discussed earlier are used throughout the present
work. These parameters scem to be fairly problem
independent, but further study is required.

3

The inertia weight parameter w is adjusted dy-
namically during the optimization, as suggested by
Shi and Eberhart,” with an cxample implementa-
tion by Fourie and Groenwold.? Shi and Eberhart”
proposed lincarly decreasing w during the first part
of the optimization, while Fourie and Groenwold?
decreased the w value with a fraction if no improve-
ment has been made for a predefined number of
consecutive design iterations.

In the present paper a different implementation
is proposed, based on the coefficient of variation
(COV) of the objective function values. The goal
is to change the w value in a problem independent
way, with no interaction from the designer. A start-
ing value of w = 1.4 is used to initially accommodate
a more global search and is dynamically reduced to
no less than w = 0.35. The idea is to terminate
the PSO algorithm with a more local search. The w
value is adjusted using (5)

(5)

where Uper 15 the newly adjusted w value, wyy 1s
the previous w value and f,. is a constant between
0 and 1. Smaller f, values would result in a more
dramatic reduction in w, that would in turn result in
a more local search. In the present work f,, = 0.975
is used throughout, resulting in a PSO algorithm
with a fairly global search characteristic.

The w' value is not adjusted at each design iter-
ation. Instead the coefficient of variation (COV)
of the objective function values for a subset of best
particles is mouitored. If the COV falls below a
specified threshold value, it is assumed that the al-
gorithm is converging towards an optimum solution
and (5) is applied. A general equation to calculate
the COV for a set of points is provided in (G)

Unew = wold.fu‘

StdDev

OV =
co AMean

(6)
where StdDev is the standard deviation and Mean
is the mean value for the set of points. In the present
work, a subset of the best 20% of particles from the
swarm are monitored and a COV threshold of 1.0 is
used.

Constrained Optimization

The basic PSO algorithm is defined for uncon-
strained problems only. Since most engineering
problems are constrained in one way or the other,
it is important to add the capability of dealing with
constrained optimization problems. It was decided
to deal with constraints by making use of a quadratic
exterior penalty function. This technique is often
used to deal with constrained problems in genetic

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

algorithms. In the current implementation, the ob-
rd

jective function is penalized as shown in (7) when
one or more of the constraints are violated,

fl@) = flx) +a Z max [0, g;(x)]”

i=1

(7)

In (7), f(x) is the original objective function, a is
a large penalty parameter, g;,{x) is the set of all
constraints {with violated constraints having values
larger than zero), and f(x) is the new. penalized,
objective function. In the present work a penalty
parameter of « = 10% is used.

Particles With Vioclated Constraints

When dealing with optimization
problems, special attention to particles with violated
constraints needs to be paid. This issue was not ad-
dressed in the literature, thus a new enhancement to
the basic PSO algorithin is proposed hLerc.

It is preferable to restrict the velocity vector of a
violated particle to a usable, feasible direction e.g.,
Vanderplaats,'! a direction that would reduce the
objective function while pointing back to the feasi-
ble region of the design space. Unfortunately, this
would require gradient information for each violated
particle. Currently, one of the attractive features
of the PSO algorithm is that no gradient informa-
tion is required and thus the concept of calculating
a usable, feasible direction is not viable.

Instead, a simple modification to (2) for particles
with one or more violated constraints is proposed.
The modification can be explained by considering
particle 7, which is assumed to have one or more
violated constraints at jteration k. By re-setting the
velocity vector of particle 7 at iteration k to zero, the
velocity vector at iteration k + 1 is obtained as

constrained

(p] - x})

i
—'——(p xk) + CoT A

At 2
The velocity of particle ¢ at iteration & + 1 is thus
only influenced by the best point found so far for
the particle itself and the current best point in the
swarm. In most cases this new velocity vector will
point back to a feasible region of the design space.
The result is to have the violated particle move back
towards the feasible design space in the next design
iteration.

(8)

H —
Vip1 = G171

Discrete/Integer Design Variables

Unlike a genetic algorithm that is inherently a dis-
crete algorithm, the PSO algorithm is inherently a
continuous algorithm. Although the PSO algorithm
is able to find optimum solutions to continuous prob-
lems very accurately, the associated computation

4

cost is high compared to gradient-based algorithms.
However, the true potential of the PSO algorithin is
in applications with discrete and/or discontinuous
functions and variables. In other words, the algo-
rithm is expected to excel in applications where a
gradient-based algorithm is not a viable alternative.

In this paper, two different modifications to the
basic PSO algorithm that allow the solution of prob-
lems with discrete variables are considered. The first
approach is straight forward. The position of each
particle is modified to represent a discrete point, by
rounding each position coordinate to its closest dis-
crete value after applying (1).

The second approach is more elaborate. The po-
sition of each particle is modified to represent a dis-
crete point, by considering a set of candidate discrete
values about the new continuous point, obtained af-
ter applving (2). The candidate discrete points are
obtained by rounding each continuous position coor-
dinate to its closest upper and lower discrete values.
For a problem with nDuvar discrete design variables,
this process will result in nDvar? candidate discrete
points. For a two dimensional, integer problem, this
would produce four candidate discrete points, lo-
cated at the vertices of a two dimensional rectangle.
The discrete point to use as the new position for the
particle is selected from the candidate set of discrete
points as the point with the shortest perpendicular
distance to the velocity vector. There are several en-
hancements to this scheme, based on the direction
of the velocity vector, that will substantially reduce
the number of candidate discrete points, but a more
detail discussion is beyond the scope of this paper.
Reducing the number of candidate discrete points is
especially important for problems with larger num-
bers of design variables.

The more elaborate approach is expected to re-
sult in a more cfficient integer/discrete algorithin. In
contrast to the expectation, numerical experiments
indicate that there is no significant difference in the
performance of the PSO algorithm when using the
first as compared to the second approach. Since
there is no advantage to using the more elaborate ap-
proach, this approach was discarded and the simpler
rounling approach is used for all integer/discrete
problems presented in this paper.

Additional Randomness

To avoid premature convergence of the algorithm,
the literature mentions the possible use of a crazi-
ness operator® that adds randomness to the swarm.
The craziness operator acts similarty to the mutation
operator in genetic algorithis. However, there does
not secm to be concensus in the literature whether

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

or not the craziness operator should be applied.
After introducing the craziness operator, Kennedy
and Eberhart® conclude that this operator may not
be necessary, while Fourie and Groenwold? reintro-
duced the craziness operator for their structural de-
sign problems. It was thus decided to implement a
craziness operator here and test it’s effectiveness for
our structural design problems.

The originally proposed craziness operator identi-
fies a small portion of randomly selected particles at
each iteration for which the velocity vector is ran-
domly changed. In the present work, the craziness
operator is modified. The craziness operator used
here also identifies a small number of particles at
each design iteration, but instead of changing the
velocity vector, both the position aud the velocity
vector are changed. The position of the particles
are changed randomly, while the velocity vector of
each modified particle is reset to only the second
component of (2) as shown in (9).

(p' —)

At
In the present implementation, the particles to mod-
ify are identified using the C'OV for the objective
function values of all particles, at the end of each
design iteration. If the COV falls helow a prede-
fined threshold value, it is assumed that the swarm
is becoming too uniform. In this case. particles that
are located far from the center of the swarm are
identified, using the standard deviation of the po-
sition coordinates of the particles. Particles that are
located more than 2 standard deviations from the
center of the swarm are subjected to the craziness
operator. In the present work, a COV threshold
value of 0.1 is used.

()

i
vl\'+l = 1T}

Example Problem

To study the behavior of the PSO algorithm, a
cantilevered beam example, simular to that consid-
cred by Vanderplaats!! was chosen. A schematic
representation of the example problem, including
matcerial properties, are shown in Fig. 1.

The beam is modeled using five segments of equal
length and the design problem is defined as mini-
mizing the material volume of the beam, subject to
maximum bending stress coustraints for each seg-
ment. The design variables are the height (i) and
width (b) of each segment, resulting in ten inde-
pendent design variables. Two cases are considered.
The first is a continuous design problem wherce the
height of each segment is allowed to vary between
50 ¢m and 100 em, while the width is allowed to
-ary between 0.5 em and 10 em. The second is an

5

¥ P - 50,000 N

) £ =2.0x10" Niem®

" L =500 ¢cm

\ @ = 14,000 N-emr’
- b,

Cross section

Fig. 1 Cantilevered beam example problem

integer/discrete case where all ten design variables
are restricted to integer values only. For the sec-
ond case, the height of each segment is allowed to
vary between 50 em and 100 em, while the width is
allowed to vary between 1 em and 10 cm.

The bending stress is obtained from the well
known bending stress equation shown in (10)

Ay
0=—7 (10)
where o represents the bending stress, M the ap-
plied bending moment, I the moment of inertia and
y is the vertical distance, measured from the neutral
axis, where the stress is calculated. For this problem
M = P(L — 1) and I = $5bI%, while the maximum
stress value occurs at y = h/2. The height thus
has a much larger influence on the bending stress,
as compared to the width of the beam. It is reason-
able to assume that the optimizer would ininimize
the weight by keeping the width constant and equal
to its lower bound, while changing the height of the
beam. In this case, the theoretical solution for the

height is

T

ab

where P is the applied tip load, x is the horizontal
distance measured from the root of the beam and @
is the allowable stress limit.

To verify the above assumptions, and to study
how well a gradient-based optimizer would solve
this problem, it was decided to model and solve
the continuous case using the GENESIS!? structural
analysis and optimization code. The theoretical op-
timum results for a beam with uniform height and
width across the span, as well as the GENESIS and
theoretical optimum results for a beam witli five seg-
ments are summarized in Table 1. The case with
uniform height and width was obtained by setting

h =

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

the width equal to its lower bound and calculating
the height from (11) to have the maximum stress at
the root equal to the allowable stress. The case with
constant height and width may be considered as a
baseline from whicl the optimizer makes improve-
ment.

Table 1 Comparison between continuous GEN-
ESIS and theoretical results

Parameter Baseline GENESIS Theory
Volume (em®) 36683 27498 27438
by {em) 0.5 0.5 0.5
by (cm) 0.5 0.5 0.5
by (em) 0.5 0.5 0.5
by (em) 0.5 0.5 0.5
by (em) 0.5 0.5 0.5
Iy (em) 146.73 146.73 146.39
ho (em) 146.73 131.16 130.93
hg (em) 146.73 113.16 113.39
hy (em) 146.73 02.78 92.58
hs (em) 146.73 65.61 65.47

Table 1 verifies both the assumptions that lead
to (11) and the GENESIS results. GENESIS solved
the problem using 12 finite element analyses. How-
ever, it should be noted that GENESIS makes use
of advanced approximation techniques to reduce the
required function evaluations for solving structural
optimization problems. A general purpose gradient-
based optimizer would most probably require be-
tween 100 and 300 function evaluations to solve this
problem.

Fiuding the theoretical optimum for the inte-
ger/discrete case is a more daunting task. Instead,
we'll determine tight upper and lower bounds for
the objective function value. A lower bound may be
obtained from (11), using the lower bound values
of 1.0 for all b;, thus producing an optimum an-
swer with half the variables being integer/discrete
and the other half being continuous. An upper
bound may be obtained by considering three dis-
crete points, obtained by rounding the continuous
h, values obtained from (11). The threc points are
obtained by rounding all /i; values up. rounding all
h; values down and rounding all 7, values to their
closest integer value. It turns out that only the case
where all i, values are rounded up produce a feasi-
ble design. thus providing an upper bound for the
integer/discrete optimum solution.

The theoretical results for a beam with uniform
height and width across the span, using the root
dimensions of the lower bound solution, and the
upper and lower bounds for the integer/discrete de-

6

sign problem are shown in Table 2. The difference
in the objective function values of the calculated
upper and lower bounds is less than 1% and Ta-
ble 2 thus provides tight upper and lower bounds
for the integer/discrete solution. Again, the beam
with constant height and width may be considered
as a baseline from which the optimization makes im-
provement.)

Table 2 Upper and lower bound solutions for
the integer/discrete case

Parameter Baseline Lower Upper

Bound Bound

Volume (em®) 51755 38803 39100
by (em) 1.0 1.0 1.0
by (cm) 1.0 1.0 1.0
b (em) 1.0 1.0 1.0
by (em) 1.0 1.0 1.0
bs (em) 1.0 1.0 1.0
Iy {em) 103.51 103.51 104
ha (em) 103.51 92.58 93
hs (em) 103.51 80.18 81
hy (em) 103.51 65.47 66
hs (em) 103.51 46.29 47

Results

The PSO algorithm was used to analyze the
beam example problem, employving the elementary
strength of materials approach described in the pre-
vious section. As discussed, two design problems
were considered, the first is a continuous problem
and the second an integer/discrete problem. For
each design probleni, the influence of two enhance-
ments to the basic algorithm is considered. The
first is the proposed craziness operator. As men-
tioned previously, there seems to be disagreement in
the literature as to the usefulness of the craziness
operator. The second is resetting the velocity vec-
tors of violated design points. Resetting the velocity
vectors is a new feature that has not been studied
previously. To fully investigate the influence of these
two enhancements, all possible combinations of us-
ing and not using the enhancements were considered,
resulting in four possible combinations. The PSO al-
gorithm was first run for a fixed number of function
evaluations and then using the proposed convergence
criterion. In all cases, a swarm size of 300 particles

ras used.

Each run was repeated 50 times and the best,
worst, mean and standard deviation of the best ob-
jective function from each of the 50 repetitions were
recorded. For the runs where the convergence crite-
rion was used, the best, worst, mean and standard

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

-~

deviation of the number of function evaluations to
convergence for each of the 50 repetitions were also
recorded. For all runs the same PSO parameters
were used, as summarized in Table 3. The w, ¢
and ¢, values were determined as discussed in previ-
ous sections of this paper. The number of particles
(swarm size) was selected as a tradeoff between cost
and reliability. Smaller swarm sizes required less
function evaluations for convergence, but decreased
the reliability of the algorithm. Larger swarm sizes
required more function evaluations for convergence,
but increased the reliability of the algorithm.

Table 3 PSO parameters used in example prob-
lems

Paraneter Value
Number of particles 300
Initial inertia weight, w 14
Trust parameter 1, o 1.50
Trust parameter 2, ¢ 2.50

Each run is identified by the combination of en-
hancements used during that run, as summarized
in Table 4. From Table 4, R would represent reset-
ting the velocities of violated particles only, while
CR would represent using the craziness operator and
resetting the velocities of violated particles.

Table 4 PSO enhancement summary

Option Definition
C Apply craziness operator
R Reset velocities of violated particles

Fixed Number of Function Evaluations

First, cach of the four combinations was evaluated
using a fixed number of design iterations equal to 50,
resulting in a total number of function evaluations
equal to 15000. The statistical results obtained from
50 repetitions for each combination are summarized
it Table 5 for the continuous design problem and in
Table 6 for the integer/discrete design problem.

Table 5 Objective function (material volume}
statistics for the continuous design problem

Option Mean StdDev Best Worst
— 41383 18548 27610 95547
R 31897 12247 27438 91809
C 43232 19866 30150 92208
CR 33534 15304 27439 110824

Table 6 Objective function (material volume)
statistics for the integer design problem

Option Mean StdDev Best Worst
-— (67380 20707 39900 112196
R 42822 10153 39100 80491
C 62562 17690 39100 107596
CR 42203 10234 39100 R50806

By comparing the statistical data, especially the
mean and standard deviation values, from Tables 5
and 6 it is clear that resetting the velocity vectors
of the violated design points has a significant and
positive influence on the performance of the PSO
algorithm. In contrast, the craziness operator does
not appear to have a big influence. It is not clear if
combining the craziness operator and resetting the
velocity vectors of the violated design points results
in any additional improvements over just resctting
the velocity vectors without the craziness operator.
Finally, the standard deviation clearly shows that
the algorithm is more successful in solving the dis-
crete problem (Table 6) than the continuous problemn
(Table 5). This was expected, since the discrete
problem results in a smaller design space as com-
pared to the continuous problem.

For the case with a fixed number of function evalu-
ations, it is possible to compare the optimum results
obtained by the PSO algorithm against a randomn
search, using the same number of function valua-
tions. We performed a random search with 15000
analyses, again repeating the process 50 times, and
recorded the statistics for the best objective function
from each repetition. The results are summarized in
Table 7.

Table 7 Objective function (material volume)
statistics for the continuous problem using a ran-
dom search

StdDev
28349

Worst
261619

Best
117115

Mean
176956

When comparing the results from Table 7 with
that from Table 5, it is clear that the random search
has a terrible performance as compared to the PSO
algorithm, using the same number of function eval-
uations.

Convergence Criterion

Next the runs of Tables 5 and 6 are repeated,
using the proposed convergence criterion. For con-
vergence the objective function is required not to
change more than 0.1% in 10 consecutive design

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

iterations. A maximmm of 500 design iterations,
equivalent to 150000 analyses, was allowed for cases
where the algorithm did not converge.

The statistical results for both the eost (number
of function evaluations) and the objective function
values obtained from 50 repetitions are summarized
in Table 8 for the continuous design problem. Ta-
ble 9 contains the corresponding results for the in-
teger/discrete design problem.

The results are simular to that of Tables 5 and G.
Resetting the velocity vectors of violated particles
has a big influence on the performance of the PSO
algorithm, while applving the craziness operator has
a much smaller influence. It would appear that com-
bining the two enhancements does have a positive
influence in that the number of function evaluations
are reduced while better results (smaller mean and
standard deviation for the objective function values)
are obtained. Again, the discrete problem is solved
more efficiently than the continuous problem.

Note that 300 particles were used in all cases. If
one considers the mean cost when using both en-
hancements, an average of 49.24 design iterations is
required to solve the continuous problem and 32.62
to solve the integer/discrete problem. Within a de-
sign iteration, all analyses are independent of each
other and can be easily parallelized with minimal
inter-process communication. It is thus reasonable
to expect near perfect speedup within a design iter-
ation, when adding more processors. Iu the extreme
case, using 300 processors should allow the designer
to solve the ten design variable continuous problem
in the equivalent time of 49 analyses, while the inte-
ger/discrete case can be solved in the equivalent tiine
of only 32 analyses. If more processors are available,
the number of particles considered can be increased
to the number of available processors. Using morc
particles has the advantage of increasing the robust-
ness of the algorithm and reducing the number of
design iterations to convergence. The PSO algo-
rithm thus has tremendous potential of efficiently
computing with very large numbers of concurrently
operating processors.

The best continuous design point found by the
PSO had an objective function of 27440 em?, while
the best discrete solution had an objective function
value of 39100 em3. The best results found by the
PSO algorithin are compared to the theoretical an-
swer for the continuous problem in Table 10.

Table 10 shows that the PSO algorithm found a
very accurate optimum solution for the continuous
design problem as compared to the theoretical an-
swer. The best integer/discrete solution found is
within the calculated upper and lower bounds sum-

8

Table 10 Comparison between PSO and theo-
retical results

Parameter Theoretical PSO
Continuous Continuous Discrete

Volume 27429 27438 39100
by 0.5 0.5 1.0
by 0.5 0.5 1.0
by 0.5 0.5 1.0
by 0.5 0.5 1.0
by, 0.5 0.5 1.0
hy 146.27 146.39 104.0
hy 130.85 130.93 93.0
hs 113.31 113.39 81.0
hy 02.54 092.58 66.0
hs 65.44 65.47 47.0

marized in Table 2. Tn fact the best integer/discrete
solution found is equal to the upper bound shown in
Table 2.

Concluding Remarks

The PSO algorithm was applied to both a coutin-
uous and an integer/discrete structural design prob-
lem. It is shown that the PSO algorithm, which is
inherently a continuous algorithm, is capable of ac-
curately solving continuous design problems, albeit
at a much higher computational cost than gradient-
based optimizers.

The results show that as expected, the PSO algo-
rithm is better suited for integer/discrete and dis-
continuous problems where use of a gradient-based
optimizer may not be appropriate. In the present
paper, it is shown that the PSO algorithm is able
to solve an integer/discrete design problem more ac-
curately and using less function evaluations as com-
pared to a similar continuous design problem.

In terms of algorithm enhancements, the newly
introduced idea of resetting the velocity vectors of
violated design points has a significant positive in-
fluence on the performance of the algorithm. The
craziness operator does not have a big influence.
However, it seems that there might be a small ad-
vantage to combining the two enhancements as com-
pared to just using the idea of resetting the velocity
vectors.

References

Ihlichalewicz, 7. and Dasgupta, D., editors, Fvolution-
ary Algorithins in Engineering Applications. Springer Verlag,
1997.

?Nemhauser, G. L. and Wolsey, L. A., Integer and Combi-
natorial Optimization, Chapler 3, John Wiley & Sons. 1988.

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

St

Table 8 Cost and objective function (materijal volume) statistics for the continuous design problem

Option Cost Objective
Mean StdDev Best Worst Mean StdDev Best Worst
- 48204 50242 15900 150000 42603 24639 27440 141260
14994 4680 8700 36900 28285 2008 27442 35880
C 44466 49665 17100 150000 37263 17684 27442 127798
CR 14772 4065 8700 27900 30979 10537 27440 68071

=]

Table 9 Cost and objective function (material volume) statistics for the integer design problem

Option Cost Objective

Mean StdDev Best Worst Mean StdDev Best Worst
77928 63671 16500 150000 61299 21301 39100 133846
R 10710 2633 6600 19200 44927 12543 39100 87780
C 65574 60139 15600 150000 57872 22711 39100 146601
CR 0786 2152 6900 18000 40759 5050 39100 73108

IKennedy, J. and Eberhart, R. C, “Particle Swarm
Optimization,” Proceedings of the 1995 IEEFE International
Confercnce on Nerual Networks, Perth, Australia, 1993,
pp. 1942- 1948,

4Fberhart. R. C. and Kennedy, J., *A New Opiimizer
Using Particles Swarm Theory,” Sizth International Sympo-
sium on Micro Machine and Human Science, Nagoya. Japan,
1995, pp. 39-43.

5Kennedy, 1. and Spears, W. M., “Matching Algorithms
to Problems: An Experiniental Test of the Particle Swarm
and Some Genetic Algorithms on the Multimodal Prob-
lem Generator,” Proceedings of the 1998 IEEE [Interna-
tional Conference on Evolutionary Computation, Anchorage,
Alaska, Nay 1-9 1998,

6Ghi, Y. and Eberhart, R. C., ~A Mlodified Particle
Swarim Optimizer,” Proceedings of the 1998 IEEE Interna-
tional Conference on Evolutionary Computation, Anchorage,
Alaska, Nay 4-9 1998,

7Shi, Y. H. and Eberhart, R. C., "Parameter Selection
in Particle Swarm Optimization,” Evolutionary Programming
VII. Lecture Notes in Computer Science, 1998. pp. 591 600.

8Clerc, M., “The Swarm and the Queen: Towards a De-
terministic and Adaptive Particle Swarm Optimization,” Pro-
ceedings of the 1999 IEEE Congress on Evolutionary Com-
putation, Washington D.C., 1999, pp. 1951 1957.

9Fourie, P. C. and Groenwold, A. A., “Particle Swarms
in Size and Shape Optimization,” Proceedings of the interna-
tional Workshop on Multidisciplinary Design Optimization,
Pretoria, South Africa, August 7-10 2000, pp. 97-106.

WEourie, P. C. and Groenwold, A. A., “Particle Swarms
in Topology Optimization,” Ertended Abstracts of the Fourth
World Congress of Structural and Multidisciplinary Opti-
mization, Dalian, China, Junc 4-8 2001, pp. 52-53.

Hyanderplaats, G. N., Numerical Optimization Tech-
niques for Engineering Design. Vanderplaats Research and
Development, Inc., 3rd ed., 1999.

12 GENESIS Version 7.0 Users Manual, Vanderplaats Re-
search and Development, Tnc., 2001,

9
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

[L]

